5.3: Introduction to the z table (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    22050
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    To introduce the table of critical z-scores, we'll first refresh and add to what you learned last chapter about distributions

    Probability Distributions and Normal Distributions

    Recall that the normal distribution has an area under its curve that is equal to 1 and that it can be split into sections by drawing a line through it that corresponds to standard deviations from the mean. These lines marked specific z-scores. These sections between the marked lines have specific probabilities of scores falling in these areas under the normal curve.

    First, let’s look back at the area between \(z\) = -1.00 and \(z\) = 1.00 presented in Figure \(\PageIndex{1}\). We were told earlier that this region contains 68% of the area under the curve. Thus, if we randomly chose a \(z\)-score from all possible z-scores, there is a 68% chance that it will be between \(z = -1.00\) and \(z = 1.00\) (within one standard deviation below and one standard deviation above the mean) because those are the \(z\)-scores that satisfy our criteria.

    5.3: Introduction to the z table (2)

    Take a look at the normal distribution in Figure \(\PageIndex{2}\) which has a line drawn through it as \(z\) = 1.25. This line creates two sections of the distribution: the smaller section called the tail and the larger section called the body. Differentiating between the body and the tail does not depend on which side of the distribution the line is drawn. All that matters is the relative size of the pieces: bigger is always body.

    5.3: Introduction to the z table (3)

    We can then find the proportion of the area in the body and tail based on where the line was drawn (i.e. at what \(z\)-score). Mathematically this is done using calculus, but we don't need to know how to do all that! The exact proportions for are given you to you in the Standard Normal Distribution Table, also known at the \(z\)-table. Using the values in this table, we can find the area under the normal curve in any body, tail, or combination of tails no matter which \(z\)-scores are used to define them.

    Let’s look at an example: let’s find the area in the tails of the distribution for values less than \(z\) = -1.96 (farther negative and therefore more extreme) and greater than \(z\) = 1.96 (farther positive and therefore more extreme). Dr. Foster didn't just pick this z-score out of nowhere, but we'll get to that later. Let’s find the area corresponding to the region illustrated in Figure \(\PageIndex{3}\), which corresponds to the area more extreme than \(z\) = -1.96 and \(z\) = 1.96.

    5.3: Introduction to the z table (4)

    If we go to the \(z\)-table shown in the Critical Values of z Table page (which can also be found from the Common Critical Value Tables at the end of this book in the Back Matter with the glossary and index), we will see one column header that has a \(z\), bidirectional arrows, and then \(p\). This means that, for the entire table (all 14ish columns), there are really two columns (or sub-columns. The numbers on the left (starting with -3.00 and ending with 3.00) are z-scores. The numbers on the right (starting with .00135 and ending with .99865) are probabilities (p-values). So, if you multiply the p-values by 100, you get a percentage.

    Let’s start with the tail for \(z\) = 1.96. What p-value corresponds to 1.96 from the z-table in Table \(\PageIndex{1}\)?

    Example \(\PageIndex{1}\)

    What p-value corresponds to 1.96 from the z-table in Table \(\PageIndex{1}\)?

    Solution

    For z = 1.96, p = .97500

    If we multiply that by 100, that means that 97.50% of the scores in this distribution will be below this score. Look at Figure \(\PageIndex{3}\) again. This is saying that 97.5 % of scores are outside of the shaded area on the right. That means that 2.5% of scores in a normal distribution will be higher than this score (100% - 97.50% = 2.50%). In other words, the probability of a raw score being higher than a z-score is p=.025.

    If do the same thing with |(z = -1.96|), we find that the p-value for \(z = -1.96\) is .025. That means that \(2.5\%\) of raw scores should be below a z-score of \(-1.96\); according to Figure \(\PageIndex{3}\), that is the shaded area on the left side. What did we just learn? That the shaded areas for the same z-score (negative or positive) are the same p-value, the same probability. We can also find the total probabilities of a score being in the two shaded regions by simply adding the areas together to get 0.0500. Thus, there is a 5% chance of randomly getting a value more extreme than \(z = -1.96\) or \(z = 1.96\) (this particular value and region will become incredibly important later). And, because we know that z-scores are really just standard deviations, this means that it is very unlikely (probability of \(5\%\)) to get a score that is almost two standard deviations away from the mean (\(-1.96\) below the mean or 1.96 above the mean).

      Attributions & Contributors

      5.3: Introduction to the z table (2024)
      Top Articles
      The Jsaux ModCase is one of my favorite Steam Deck accessories, but there’s a 4th of July deal on the Asus ROG Ally version that slaps - games news - NewsLocker
      Police pulled over a Waymo car that drove in the oncoming lane in Phoenix - Technology news - NewsLocker
      Tripadvisor Antigua Forum
      Spasa Parish
      Risen Kaiser Horns
      Missing 2023 Showtimes Near Amc Classic Florence 12
      Lux Nails Columbia Mo
      SSD an SATA Anschluss bei Futro S920
      Evil Dead Rise Showtimes Near Amc Antioch 8
      Eso Mud Ball Miscreant
      Spanish Speaking Daycare Near Me
      Dr Thottam Ent Clinton Township
      Dd Codeshare
      Peanut Oil Can Be Part Of A Healthy Diet — But Only If It's Used This Way
      Blaire White's Transformation: Before And After Transition
      Kind Farms Reserve Medical And Recreational Cannabis Photos
      Free Bubble Letters Generator | Add bubble letters with a click!
      Pier One Chairs
      Samanthaschwartz Fapello
      2503 South Tacoma Way
      Waitlistcheck Sign Up
      Phumikhmer 2022
      Swissport Timecard
      2022 NFL Predictions
      C.J. Stroud und Bryce Young: Zwei völlig unterschiedliche Geschichten
      Spanish Letter Closings: formal, friendly, and informal - Wanderlust Spanish
      Neos Urgent Care Springfield Ma
      Palindromic Sony Console For Short Crossword Clue 6 Letters: Composer Of
      Joy Ride 2023 Showtimes Near Cinemark Huber Heights 16
      Qmf Bcbs Prefix
      Po Box 182223 Chattanooga Tn 37422 7223
      Mark Rosen announces his departure from WCCO-TV after 50-year career
      15 Best HDMovie2 Alternatives to Watch Movies in Hindi & Other Indian Languages Online Free Leawo Tutorial Center
      Goodwoods British Market Friendswood
      10 Top-Rated Tourist Attractions in Negril
      715 Henry Ave
      Kino am Raschplatz - Vorschau
      About My Father Showtimes Near Megaplex Theatres At Mesquite
      Cece Rose Facial
      Hinterlands Landmarks
      Colorado Pick 3 Lottery
      Herbalism Guide Tbc
      24 Hour Pharmacy Berkeley
      Why Does Tyrus Always Carry His Belt
      Degreeworks Sbu
      Booknet.com Contract Marriage 2
      Jeld Wen Okta Com Login
      Viduthalai Movierulz
      Where To Find Mega Ring In Pokemon Radical Red
      Toldeo Craigslist
      Halloween 1978 Showtimes Near Movie Tavern Little Rock
      8X10 Meters To Square Meters
      Latest Posts
      Article information

      Author: Sen. Ignacio Ratke

      Last Updated:

      Views: 5733

      Rating: 4.6 / 5 (76 voted)

      Reviews: 91% of readers found this page helpful

      Author information

      Name: Sen. Ignacio Ratke

      Birthday: 1999-05-27

      Address: Apt. 171 8116 Bailey Via, Roberthaven, GA 58289

      Phone: +2585395768220

      Job: Lead Liaison

      Hobby: Lockpicking, LARPing, Lego building, Lapidary, Macrame, Book restoration, Bodybuilding

      Introduction: My name is Sen. Ignacio Ratke, I am a adventurous, zealous, outstanding, agreeable, precious, excited, gifted person who loves writing and wants to share my knowledge and understanding with you.